Alternative approaches towards glycosylated eight-membered ring compounds employing Claisen rearrangement of mono and disaccharide allyl vinyl ether precursors

Stefan Jürs and Joachim Thiem*
Institut für Organische Chemie der Universität, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
Received 25 January 2005; accepted 24 February 2005
Available online 31 March 2005
Dedicated to the memory of Professor Christian Pedersen, Technical, University of Denmark, Lyngby-Copenhagen, the excellent Danish, carbohydrate chemist

Abstract

Highly functionalized eight-membered rings having a glycosidic residue were synthesized in two different ways involving either glycosylation of a sugar-derived cyclooctenone with high stereocontrol as well as a Claisen rearrangement of a disaccharide derivative.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Glycosides of eight-membered carbocycles are exceptional structural motifs in nature and can be found in a number of novel taxane derivatives ${ }^{1}$ as well as in further terpenoids based on the fusicoccane framework. ${ }^{2}$ The biological functions of these structures are not fully understood at present, however, some of these compounds seem to have an impact on plant growth and development and stimulate seed germination. ${ }^{3}$

2. Results and discussion

An attractive approach to chiral oxygenated eight-membered rings consists of the ring enlargement of a pyra-nose-derived allyl vinyl ether to the corresponding 5 -cyclooctenone derivative. ${ }^{4,5}$ Thus, D-glucose 1 was transformed into the peracetylated α-bromide 2 (Scheme 1) and subsequently alkylated to afford the C-vinyl glucoside 3^{6} as an inseparable mixture of anomers ($\alpha: \beta=0.2: 1.0$). The initially formed C-glucoside with unprotected hydroxyl groups had to be peracetylated in order to facilitate the removal of large amounts of magnesium salts. Deacetylation of 3 under Zemplén

[^0]conditions and selective tosylation gave 5 . The introduction of benzyl groups simultaneously caused the substitution of the tosylate by a bromide, hence, this Finkelstein exchange was driven to completion by both heating and an extra addition of NaBr . The preparation of the enol ether 7 from $\mathbf{6}$, accomplished by silver fluoride, ${ }^{7}$ assisted the elimination of hydrogen bromide. Simple heating to $185^{\circ} \mathrm{C}$ for 1 h in nitrobenzene furnished the desired 5 -cyclooctenone $\mathbf{8}$ in over 80% yield.

Upon reduction using either LiAlH_{4} or triisobutylaluminium, only one diastereomer of the 5 -cyclooctenol 9 was formed. It is interesting to note that only minor changes of the coupling constant values could be observed after reduction of $\mathbf{8}$ to $\mathbf{9}$. An additional large coupling constant ($J_{1,2}=8.5 \mathrm{~Hz}$) indicates a transarrangement and therefore (S)-configuration of the new stereogenic centre with an equatorial hydroxy group. Strong NOE interactions between H-2, H-4 and H-7 in compound $\mathbf{8}$ suggest a boat-chair like geometry, the most common conformation amongst eight-membered rings. ${ }^{8}$ The same conformation is likely to apply to 9 in view of the lack of spectral changes. The secondary hydroxyl function could be glycosylated ${ }^{9}$ using the benzylated β-trichloroacetimidate $\mathbf{1 0}^{10}$ to give selectively the 1,2 -cis configured α-glucoside 11. The decrease of $J_{2,3}=4.7 \mathrm{~Hz}$ in $\mathbf{9}$ to $J_{4,5}=1.9 \mathrm{~Hz}$ in 11 is remarkable since all other coupling constants in both compounds again remain similar. Hence, $\mathbf{1 1}$ is assumed to feature

Scheme 1. Reagents and conditions: (i) $\mathrm{CH}_{2}=\mathrm{CHMgBr}$, THF, reflux, then $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 41 \%$; (ii) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{Amberlite} \mathrm{IR} 120 \mathrm{H}^{+}, 100 \%$; (iii) $\mathrm{TsCl}, \mathrm{Py}, 93 \%$; (iv) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}$, then $\mathrm{NaBr}, 80^{\circ} \mathrm{C}, 31 \%$; (v) $\mathrm{AgF}, \mathrm{Py}, 80 \%$; (vi) $\mathrm{PhNO}_{2}, 185^{\circ} \mathrm{C}, 81 \%$; (vii) $\mathrm{LiAlH} 4, \mathrm{THF}, 88 \%$; (viii) $\mathbf{1 0}$, TMSOTf, DCM, molecular sieves $4 \AA, 51 \%$.
a new interesting spatial arrangement of oxygenated functionalities, presumably boat-chair like in the cyclooctenyl residue, that could be of interest with respect to disaccharide mimetics. Moreover, the newly generated double bond offers opportunities for the introduction of further functionalities.

The selective introduction of a glycosidic residue to one of the benzyl protected hydroxyl groups in $\mathbf{8}$ was figured to be more complicated. To circumvent random glycosylation of deprotected $\mathbf{8}$, the introduction of the glycoside should be carried out at an earlier stage in the synthesis of the 5-cyclooctenone with the aid of conventional protecting group manipulations. For this purpose, D-mannose $\mathbf{1 2}$ was converted into the acetylated α-bromide 13, which in turn was used for the introduction of a C-vinyl group (Scheme 2). Subsequent deacetylation followed by selective silylation and isopropylidenation led to the mannose derivative $\mathbf{1 7}$ unprotected at the 4-position. The glycosylation of the latter using $\mathbf{1 0}(\alpha: \beta=1.0: 0.8)$ under the same conditions as for the synthesis of $\mathbf{1 1}$ gave, selectively, the protected Glca1-4Man disaccharide derivative 18 (53%). The following steps included desilylation (TBAF, THF, 61\%), tosylation ($\mathrm{TsCl}, \mathrm{py}, 92 \%$) and substitution of the tosylate by a bromide ($\mathrm{NaBr}, \mathrm{DMF}, 70^{\circ} \mathrm{C}$, quant.) to facilitate elimination using silver fluoride to give precursor 22 in quantitative yields after reaction (TLC), although in moderate yields after work-up. ${ }^{11}$ In the subsequent experiment it was shown that the properly functionalized disaccharide with an allyl vinyl ether substructure 22 could be thermally converted into the corresponding glycosylated cyclooctenone $\mathbf{2 3}$ (70%) by a Claisen rearrangement. Precursor $\mathbf{2 2}$ was dissolved in a decane/toluene mixture (ratio 5:1) and heated to $180^{\circ} \mathrm{C}$ for 15 min in a microwave device. The pronounced effectiveness of
this solvent mixture can be attributed to the high heat capacity of decane, granting an improved energy transfer onto the substrate, and the absence of oxygen in both solvents, leading to significantly less decomposition. The use of triisobutylaluminium as a catalyst for the Claisen rearrangement, which was reported to be successful in several synthetic undertakings, ${ }^{12,13}$ did not prove effective in this case, presumably due to the high density of oxygenated functionalities. The boat-chair conformation of $\mathbf{2 3}$ was also established by thorough analysis of NOE spectra and coupling constants. In this case, a relatively large coupling constant $J_{1,2}=8.9 \mathrm{~Hz}$ was observed when compared to compound $8\left(J_{1,2}=4.4 \mathrm{~Hz}\right)$. This can be attributed to the fused 1,3 -dioxolane ring causing a somewhat more strained conformation.

3. Conclusion

The novel enantiopure cyclooctenyl glycosides reported herein are of crucial interest with regards to disaccharide mimetics due to their unique conformational properties consisting of a boat-chair conformation in which the chair part is highly oxygenated and therefore bears exceptional resemblance to natural substrates. Further studies including complete deprotection as well as more functionalizations of the related compounds will be presented in due course.

4. Experimental

4.1. General

Solvents were purified and dried according to standard procedures. The microwave experiment was performed

Scheme 2. Reagents and conditions: (i) $\mathrm{CH}_{2}=\mathrm{CHMgBr}$, THF, reflux, then $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 45 \%$; (ii) $\mathrm{NaOMe}, \mathrm{MeOH}$, Amberlite $\mathrm{IR} 120 \mathrm{H}^{+}, 100 \%$; (iii) TBDPSCl, imidazole, DMF, 80%; (iv) $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{CH}_{3}$, acetone, p-TSA, 62%; (v) 10, TMSOTf, DCM, molecular sieves $4 \AA$, 53%; (vi) TBAF, THF, 61%; (vii) TsCl, Py, cat. DMAP, 83%; (viii) NaBr , DMF, $70^{\circ} \mathrm{C}, 100 \%$; (ix) $\mathrm{AgF}, \mathrm{Py}, 21 \%$; (x) n-decane/toluene $5: 1,180{ }^{\circ} \mathrm{C}, 70 \%$.
in a CEM microwave system (Discover, 300 W maximum power output). Petroleum ether used refers to bp $50-70^{\circ} \mathrm{C}$. TLC was performed on silica gel $60-$ coated aluminium sheets (Merck or Macherey-Nagel), with detection by UV at 254 nm and by heating with $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \%$ in EtOH). Flash chromatography was carried out on silica gel $60(0.04-0.063 \mathrm{~mm}$; Merck, Macherey-Nagel or ICN). NMR spectra were recorded on a Bruker AMX-400 NMR spectrometer (${ }^{1} \mathrm{H}$: $400 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 100 \mathrm{MHz}$) and analyzed with the respective solvent peaks as references. IR spectra were recorded on a Thermo Electron FT-IR spectrometer (Nicolet Avatar 370). Melting points were determined on a Leitz apparatus and are uncorrected. The optical rotations were measured on a Perkin-Elmer 243 or 341 polarimeter at $20^{\circ} \mathrm{C}$. With regards to nomenclature, in most cases the sugar nomenclature ${ }^{14}$ was applied except for the more complex oligohydroxy cyclooctene derivatives.
4.2. 4,5,6,8-Tetra- O-acetyl-3,7-anhydro-1,2-dideoxy-d-glycero-d-gulo-oct-1-enitol [β-anomer] and 4,5,6,8-tetra-O-acetyl-3,7-anhydro-1,2-dideoxy-d-glycero-d-ido-oct-1enitol [α-anomer] 3

Under an argon atmosphere, a solution of 2,3,4,6-tetra-O-acetyl- α-D-glucopyranosylbromide $\mathbf{2}^{15}(8.23 \mathrm{~g}, 20.00$ $\mathrm{mmol})$ in dry THF $(60 \mathrm{~mL})$ was added dropwise to a solution of vinyl magnesium bromide in THF $(200 \mathrm{~mL}, 1 \mathrm{M}, 200 \mathrm{mmol})$. At the end of the exothermic reaction, heating under reflux was continued
for 5 h . The reaction mixture was poured onto ice/ water and neutralized with acetic acid. The aqueous phase was evaporated and the residue dried for several hours in vacuo. After suspension of the residue in pyridine (200 mL) and addition of acetic anhydride $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the reaction mixture was stirred for 2 days at room temperature. The mixture was then poured into iced water and extracted several times with dichloromethane. After evaporation of the solvent, the residue was purified by column chromatography (petroleum ether/ethyl acetate 3:1) to give 2.970 g of $3(8.29 \mathrm{mmol}, 41 \%$, colourless crystals) as an inseparable anomeric mixture ($\alpha: \beta \approx 0.2: 1.0$). $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9}$ (358.3); MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 381,[\mathrm{M}+\mathrm{K}]^{+}: 397$; β-anomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.99$, $2.00,2.02,2.08(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}, \mathrm{Ac}), 3.69(\mathrm{ddd}, 1 \mathrm{H}$, H-7, $\left.J_{6,7}=9.7, J_{7,8 \mathrm{a}}=4.8, J_{7,8 \mathrm{~b}}=2.2 \mathrm{~Hz}\right), 3.86(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{H}-3, J_{2,3}=7.1, J_{3,4}=9.7 \mathrm{~Hz}$), $4.12(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}-8 \mathrm{~b}, J_{7,8 \mathrm{~b}}=2.2, J_{8 \mathrm{a}, 8 \mathrm{~b}}=12.4 \mathrm{~Hz}$), $4.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-$ $\left.8 \mathrm{a}, \quad J_{7,8 \mathrm{a}}=4.8, \quad J_{8 \mathrm{a}, 8 \mathrm{~b}}=12.4 \mathrm{~Hz}\right), \quad 4.93(\mathrm{dd} \sim \mathrm{t}, \quad 1 \mathrm{H}$, $\left.\mathrm{H}-4, J_{3,4}=J_{4,5}=9.7 \mathrm{~Hz}\right), 5.08\left(\mathrm{dd} \sim \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-6, J_{5,6}=\right.$ $\left.J_{6,7}=9.7 \mathrm{~Hz}\right), \quad 5.22\left(\mathrm{dd} \sim \mathrm{t}, \quad 1 \mathrm{H}, \quad \mathrm{H}-5, \quad J_{4,5}=J_{5,6}=\right.$ $9.7 \mathrm{~Hz}), 5.26-5.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-1 \mathrm{~b}, J_{1 \mathrm{a}, 2}=17.4\right.$, $\left.J_{1 \mathrm{~b}, 2}=10.4 \mathrm{~Hz}\right), 5.75\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}-2, J_{2,3}=7.1 \mathrm{~Hz}\right)$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.75,20.79$, 20.84, 20.90 ($4 \mathrm{C}, 4 \times$ acetyl-Me), 62.41 ($1 \mathrm{C}, \mathrm{C}-8$), 68.66, 71.37, 74.09, 75.74, 79.59 (5C, C-3, C-4, C-5, C-6, C-7), 120.21 ($1 \mathrm{C}, \mathrm{C}-1$), 133.35 ($1 \mathrm{C}, \mathrm{C}-2$), 169.62, 169.63, 170.50, 170.87 ($4 \mathrm{C}, 4 \times$ acetyl- CO_{2}) ppm; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9}$ (358.3): C, 53.62; H, 6.20. Found C, 53.58 ; H, 6.24.

4.3. 3,7-Anhydro-1,2-dideoxy-D-glycero-D-gulo-oct-1-enitol [β-anomer] and 3,7-anhydro-1,2-dideoxy-D-glycero-D-ido-oct-1-enitol [α-anomer] 4

To a solution of $3(2.790 \mathrm{~g}, 8.288 \mathrm{mmol})$ in dry methanol $(50 \mathrm{~mL})$ was added sodium methoxide (NaOMe) until pH 9 was reached. The reaction mixture was stirred for several hours until TLC control (dichloromethane/methanol 10:1) confirmed complete reaction. After neutralization with Amberlite IR $120 \mathrm{H}^{+}$, the solution was filtered and the solvent evaporated to give 1.570 g of $4(8.254 \mathrm{mmol}, 100 \%)$ as an inseparable anomeric mixture ($\alpha: \beta \approx 0.2: 1.0$); $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}$ (190.2); MAL-DI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 213,[\mathrm{M}+\mathrm{K}]^{+}: 229 ; \beta$-anomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=3.09$ (dd $\sim \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4$), 3.25-3.38 (m, 6H, H-5, H-6, H-7, $3 \times$ OH), 3.60-3.68 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-8 \mathrm{~b}, J_{2,3}=5.9 \mathrm{~Hz}\right), 3.86(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-$ 8a), 5.21 (ddd, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 5.39$ (ddd, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 5.93 (ddd, $1 \mathrm{H}, \mathrm{H}-2$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=63.10(1 \mathrm{C}, \mathrm{C}-8), 71.86,75.40,79.65,81.57,81.67$ (5C, C-3, C-4, C-5, C-6, C-7), 117.68 (1C, C-1), 136.93 (1C, C-2) ppm; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}$ (190.2): C, 50.51; H, 7.42; Found: C, 48.88; H, 7.71 (hygroscopic).

4.4. 3,7-Anhydro-1,2-dideoxy-8-O-(4-toluenesulfonyl)-d-glycero-d-gulo-oct-1-enitol [β-anomer] and 3,7-anhydro-1,2-dideoxy-8-O-(4-toluenesulfonyl)-d-glycero-d-ido-oct-1-enitol [α-anomer] 5

To a solution of $4(1.432 \mathrm{~g}, 7.530 \mathrm{mmol})$ in dry pyridine $(50 \mathrm{~mL})$ was added p-toluenesulfonyl chloride $(1.58 \mathrm{~g}$, 8.29 mmol) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 2 days. If necessary, further small portions of p-toluenesulfonyl chloride were added to effect the complete consumption of starting material. The reaction was terminated by the addition of water followed by evaporation of the solvents and co-distillation with toluene. Column chromatography of the residue (dichloromethane/methanol 10:1) gave 2.42 g 5 ($7.03 \mathrm{mmol}, 93 \%$) as an inseparable mixture of anomers $(\alpha: \beta \approx 0.2: 1.0) ; \quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{~S} \quad(344.4) ; \quad$ MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 367,[\mathrm{M}+\mathrm{K}]^{+}: 383 ; ~ \beta$-anomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.43$ (s, $3 \mathrm{H}, \mathrm{Ts}-\mathrm{Me}$), 3.20-3.79 (m, 7H, H-4, H-5, H-6, H-7, $3 \times \mathrm{OH}$), 4.23-4.31 (m, $2 \mathrm{H}, \mathrm{H}-8 \mathrm{a} / \mathrm{b}), 5.23$ (d, 1H, H-1b), 5.30 (d, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{a})$, $5.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 7.32,7.78(2 \times \mathrm{d}, 4 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.79(1 \mathrm{C}, \mathrm{Ts}-\mathrm{Me})$, 69.52 (1C, C-8), 69.86, 73.62, 76.94, 78.11, 80.28 (5C, C-3, C-4, C-5, C-6, C-7), 118.57 (1C, C-1), 128.16, 130.03, 132.81 (5C, Ar), 134.75 (1C, C-2) ppm.

4.5. 3,7-Anhydro-4,5,6-tri-O-benzyl-8-bromo-1,2,8-tride-oxy-d-glycero-D-gulo-oct-1-enitol 6

To a solution of $5(1.692 \mathrm{~g}, 4.913 \mathrm{mmol})$ in dry DMF $(45 \mathrm{~mL})$ were added benzylbromide $(4.67 \mathrm{~mL}$, 39.3 mmol) and sodium hydride (1.179 g of a 60% suspension in paraffine, 29.48 mmol) one after another whilst stirring. After 3 h , sodium bromide was added $(2.53 \mathrm{~g}, 24.56 \mathrm{mmol})$, the solution heated to $80^{\circ} \mathrm{C}$ and stirring continued overnight. The reaction was terminated by the addition of ethyl acetate and water. The
solution was extracted with dichloromethane and the combined organic extracts washed with saturated sodium chloride solution. After evaporation of the solvents, the residue was purified by column chromatography (petroleum ether/ethyl acetate 20:1) to give 0.921 g of $\mathbf{6}(1.759 \mathrm{mmol}, 36 \%$, yellowish solid) as pure β-anomer; mp (solid after chromatography): $65-67{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}=+19.4$ (c $0.5, \mathrm{CHCl}_{3}$) ; $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Br}$, 523.5; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 545,547 ;[\mathrm{M}+\mathrm{K}]^{+}$: 561; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.35(\mathrm{dd} \sim \mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{H}-4, J_{3,4}=J_{4,5}=9.4 \mathrm{~Hz}\right), 3.47-3.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7$, $\left.J_{6,7}=9.4, J_{7,8 \mathrm{a}}=2.5, J_{7,8 \mathrm{~b}}=4.3 \mathrm{~Hz}\right), 3.60-3.64(\mathrm{~m}, 2 \mathrm{H}$, H-6, H-8b, $J_{5,6}=J_{6,7}=9.4, J_{7,8 \mathrm{~b}}=4.3, \quad J_{8 \mathrm{a}, 8 \mathrm{~b}}=10.9$ $\mathrm{Hz}), 3.70\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}, J_{7,8 \mathrm{a}}=2.5, J_{8 \mathrm{a}, 8 \mathrm{~b}}=10.9 \mathrm{~Hz}\right)$, $3.75\left(\mathrm{dd} \sim \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5, J_{4,5}=J_{5,6}=9.4 \mathrm{~Hz}\right), 3.84(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{H}-3, J_{2,3}=6.1, J_{3,4}=9.4 \mathrm{~Hz}$), 4.67, 4.74, 4.76, $4.88,4.94,4.95\left(6 \times \mathrm{d}, 6 \times 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.30-5.33(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J_{1 \mathrm{~b}, 2}=10.7, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.3 \mathrm{~Hz}\right), 5.49(\mathrm{ddd} \sim \mathrm{dt}$, $\left.1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, J_{1 \mathrm{a}, 2}=17.3, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.3 \mathrm{~Hz}\right), 5.93-6.01(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-2, J_{1 \mathrm{a}, 2}=17.3, J_{1 \mathrm{~b}, 2}=10.7, J_{2,3}=6.1 \mathrm{~Hz}$), $7.28-$ $7.38(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=33.57(1 \mathrm{C}, \mathrm{C}-8), 75.31,75.48,75.78\left(3 \mathrm{C}, \mathrm{OCH}_{2}\right)$, $77.21,79.79,79.99,82.78,86.57$ (5C, C-3, C-4, C-5, C-6, C-7), 118.57 (1C, C-1), 127.85-128.75 (15C, Ar), 135.00 (1C, C-2), 138.05, 138.11, 138.58 (3C, Ar) ppm; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Br}, 523.5$: C, 66.53 ; H, 5.98. Found: C, 65.71; H, 5.99.

4.6. 3,7-Anhydro-4,5,6-tri- O-benzyl-1,2,8-trideoxy-d-gulo-oct-1,7-dienitol 7

To a solution of $6(1.147 \mathrm{~g}, 2.190 \mathrm{mmol})$ in dry pyridine $(40 \mathrm{~mL})$ was added silver fluoride $(1.100 \mathrm{~g}, 8.67 \mathrm{mmol})$. The solution was stirred for 2 days at room temperature under light exclusion until TLC control confirmed the complete consumption of starting material. After dilution with dichloromethane followed by filtration, evaporation and co-distillation with toluene the residue was purified by column chromatography (petroleum ether/ ethyl acetate $20: 1$) to give $0.780 \mathrm{~g} 7(1.760 \mathrm{mmol}, 80 \%)$ as colourless crystals (pure β-anomer). Mp (solid after chromatography): $55^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}=-75.1$ (c 0.2 , $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{4}, 442.6 ;$ MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}$: 465, $[\mathrm{M}+\mathrm{K}]^{+}: 481 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=3.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-4, J_{3,4}=9.8, J_{4,5}=7.5 \mathrm{~Hz}\right), 3.57$ $\left(\mathrm{dd} \sim \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5, J_{4,5}=J_{5,6}=7.5 \mathrm{~Hz}\right), 3.81(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-6, J_{5,6}=7.5 \mathrm{~Hz}\right), 3.94-3.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3, J_{2,3}=6.4\right.$, $\left.J_{3,4}=9.8 \mathrm{~Hz}\right), 4.45-4.70\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-8 \mathrm{a} / \mathrm{b}, \mathrm{OCH}_{2}\right), 5.16-$ $5.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.3, J_{1 \mathrm{~b}, 2}=10.7 \mathrm{~Hz}\right), 5.31-$ $5.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.3, J_{1 \mathrm{a}, 2}=17.3 \mathrm{~Hz}\right), 5.76-$ $5.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2, J_{1 \mathrm{a}, 2}=17.3, J_{1 \mathrm{~b}, 2}=10.7, J_{2,3}=6.4\right.$ $\mathrm{Hz}), \quad 7.10-7.24 \quad(\mathrm{~m}, \quad 15 \mathrm{H}, \quad \mathrm{Ar}) \quad \mathrm{ppm} .{ }^{13} \mathrm{C}{ }^{2} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta=72.83, \quad 74.54, \quad 74.68 \quad(3 \mathrm{C}$, OCH_{2}), 78.99, 79.49, 82.12, 84.50 (4C, C-3, C-4, C-5, C-6), 94.94 ($1 \mathrm{C}, \mathrm{C}-8$), 118.65 ($1 \mathrm{C}, \mathrm{C}-1$), $127.84-128.60$ (15C, Ar), 135.08 (1C, C-2), 138.02, 138.13, 138.46 (3C, Ar), 156.10 (1C, C-7) ppm.

4.7. cis-($2 S, 3 R, 4 S$)-2,3,4-Tribenzyloxycyclooct-5-enone 8

A solution of $7(0.758 \mathrm{~g}, 1.710 \mathrm{mmol})$ in nitrobenzene $(20 \mathrm{~mL})$ was placed in a preheated oil bath and heated at $185^{\circ} \mathrm{C}$ for 1 h . After evaporation of the solvent, the
residue was purified by column chromatography (petroleum ether/ethyl acetate $10: 1$) to give 0.612 g 8 $(1.383 \mathrm{mmol}, 81 \%)$ as an orange syrup. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{4}$, 442.6; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 465,[\mathrm{M}+\mathrm{K}]^{+}: 481$; $[\alpha]_{\mathrm{D}}^{20}=+20.4\left(c \quad 1, \mathrm{CHCl}_{3}\right) ; v\left(\right.$ film $\left./ \mathrm{cm}^{-1}\right): 1719(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=1.77-1.83,1.98-2.07$, 2.59-2.65 ($3 \times \mathrm{m}, 4 \mathrm{H}, \mathrm{H}-7 \mathrm{a} / \mathrm{b}, \mathrm{H}-8 \mathrm{a} / \mathrm{b}$), $3.72(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}-3, J_{2,3}=4.4, J_{3,4}=8.8 \mathrm{~Hz}\right), 4.07(\mathrm{~d}, \quad 1 \mathrm{H}, \quad \mathrm{H}-2$, $\left.J_{2,3}=4.4 \mathrm{~Hz}\right), 4.15,4.20\left(2 \times \mathrm{d}, 2 \times 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.24$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-4, J_{3,4}=8.8, J_{4,5}=6.6 \mathrm{~Hz}\right), 4.38,4.51$ $\left(2 \times \mathrm{d}, 2 \times 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.54-5.63$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, J_{4,5}=6.6, J_{5,6}=11.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.68(1 \mathrm{C}, \mathrm{C}-7), 42.35$ (1C, $\mathrm{C}-8), 71.87,72.51,74.65\left(3 \mathrm{C}, \mathrm{OCH}_{2}\right), 77.87$, 80.31, 84.87 (3C, C-2, C-3, C-4), 127.62, 127.79, 127.91, 128.04, 128.44, 128.47, 128.60, 131.67, 131.71 (15C, Ar), (2C, C-5, C-6), 137.66, 138.47, 138.50 (3C, $\mathrm{Ar}), 212.58$ (1C, C-1) ppm.

4.8. cis-(1S,2R,3R,4S)-2,3,4-Tribenzyloxycyclooct-5-en-1-ol 9

To a solution of $\mathbf{8}(92 \mathrm{mg}, 208 \mu \mathrm{~mol})$ in THF $(4 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(14 \mathrm{mg}, 369 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$ and stirring continued overnight. Water was added to destroy excess LiAlH_{4}. The precipitate was diluted with a small amount of 2 M sulphuric acid. The solution was diluted with chloroform and the organic phase washed with water. After another extraction of the aqueous phase with chloroform the combined organic phases were evaporated. Column chromatography of the residue (petroleum ether/ethyl acetate $10: 1$) gave 81 mg of $9(182 \mu \mathrm{~mol}, 88 \%)$ as a yellowish syrup; $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{4}$, 444.6; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]_{1}^{+}: 467,[\mathrm{M}+\mathrm{K}]^{+}: 483 ;$ $[\alpha]_{\mathrm{D}}^{20}=-4.8 \quad\left(c \quad 1, \quad \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \quad$ NMR $\quad(500 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=1.79-1.89,1.96-2.03,2.52-2.61(3 \times \mathrm{m}, 4 \mathrm{H}$, $\mathrm{H}-7 \mathrm{a} / \mathrm{b}, \mathrm{H}-8 \mathrm{a} / \mathrm{b}), 3.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.66$ (dd, 1 H , $\left.\mathrm{H}-3, J_{2,3}=4.7, J_{3,4}=7.9 \mathrm{~Hz}\right), 3.77(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2$, $\left.J_{1,2}=8.5, \quad J_{2,3}=4.7 \mathrm{~Hz}\right), \quad 4.18-4.21 \quad(\mathrm{~m}, \quad 2 \mathrm{H}, \quad \mathrm{H}-1$, $\left.\mathrm{OCH}_{2}\right), 4.39,4.46\left(2 \times \mathrm{d}, 2 \times 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.61(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.78\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.82(\mathrm{dd} \sim \mathrm{t}, 1 \mathrm{H}$, $\left.\mathrm{H}-4, \quad J_{3,4}=J_{4,5}=7.9 \mathrm{~Hz}\right), \quad 5.56-5.60 \quad(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{H}-5$, $\left.J_{4,5}=7.9, \quad J_{5,6}=10.9 \mathrm{~Hz}\right), \quad 5.71-5.77(\mathrm{~m}, \quad 1 \mathrm{H}, ~ \mathrm{H}-6$, $\left.J_{5,6}=10.9 \mathrm{~Hz}\right), \quad 7.07-7.35\left(\mathrm{~m}, \quad 15 \mathrm{H}\right.$, Ar) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=22.21$ (1C, C-7), 32.42 (1C, C-8), 70.71, 78.97, 81.60, 85.20 (4C, C-1, C-2, $\mathrm{C}-3, \mathrm{C}-4), 71.40,73.61,74.95\left(3 \mathrm{C}, \mathrm{OCH}_{2}\right), 127.70-$ 128.62, 138.93, 139.09, 139.47 (18C, Ar), 129.76, 133.68 (2C, C-5, C-6) ppm.

4.9. [cis-(3S,4R,5S,6S)-3,4,5-Tribenzyloxycycloocten-6-yl]-2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-benzyl- α-d-glucopyranoside 11

To a solution of $9(17 \mathrm{mg}, 38 \mu \mathrm{~mol})$ in dry dichloromethane $(1.3 \mathrm{~mL})$ with molecular sieves was added a solution of TMSOTf in dichloromethane ($40 \mu \mathrm{~L}$, concentration approx. $0.223 \mathrm{M}, 9 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$ under an argon atmosphere. Afterwards, a solution of $\mathbf{1 0}(41 \mathrm{mg}, 60 \mu \mathrm{~mol})$ in dichloromethane (1.1 mL) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight and terminated by the addition of three drops of triethylamine. Evaporation of the solvent and chromatography of the residue (petroleum ether/ethyl acetate $12: 1$) gave 19 mg of $\mathbf{1 1}$
$(20 \mu \mathrm{~mol}, 51 \%) ; ~[\alpha]_{\mathrm{D}}^{20}=+17.3\left(c \mathrm{l}, \mathrm{CHCl}_{3}\right) ; \mathrm{C}_{63} \mathrm{H}_{66} \mathrm{O}_{9}$, 967.3; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}=989,[\mathrm{M}+\mathrm{K}]^{+}=1005$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=1.66-1.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ $8 \mathrm{~b}, \mathrm{H}-7 \mathrm{a} / \mathrm{b}), 2.79-2.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 3.57$ (dd, 1 H , $\left.\mathrm{H}-2^{\prime}, J_{1^{\prime}, 2^{\prime}}=3.2, J_{2^{\prime}, 3^{\prime}}=9.5 \mathrm{~Hz}\right), 3.70,3.73(2 \times \mathrm{dd}$, $2 \times 1 \mathrm{H}, \quad \stackrel{\mathrm{H}}{ }-6^{\prime} \mathrm{a} / \mathrm{b}, \quad J_{5^{\prime}, 6^{\prime} \mathrm{a}}=4.1, \quad J_{5^{\prime}, 6^{\prime} \mathrm{b}}=2.0, \quad J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=$ $10.5 \mathrm{~Hz}), 3.76\left(\mathrm{dd} \sim \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}, J_{3^{\prime}, 4^{\prime}}=J_{4^{\prime}, 5^{\prime}}=9.5 \mathrm{~Hz}\right)$, 3.88 (dd, $\left.1 \mathrm{H}, \mathrm{H}-4, J_{3,4}=8.5, J_{4,5}=1.9 \mathrm{~Hz}\right), 4.00(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}-5, J_{4,5}=1.9, J_{5,6}=8.2 \mathrm{~Hz}\right), 4.05,4.29(2 \times \mathrm{d}$, $\left.2 \times 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.40-4.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6, J_{5,6}=8.2 \mathrm{~Hz}\right)$, 4.67, 4.76, $4.88,4.90\left(4 \times \mathrm{d}, 4 \times 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.92(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=3.2\right), 4.98,5.04\left(2 \mathrm{~d}, 2 \times 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $5.26 \quad\left(\mathrm{dd} \sim \mathrm{t}, \quad 1 \mathrm{H}, \quad \mathrm{H}-3, \quad J_{2,3}=J_{3,4}=8.5 \mathrm{~Hz}\right), \quad 5.68-$ $5.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2, J_{1,2}=10.4, J_{2,3}=8.5 \mathrm{~Hz}\right), 5.77-5.82$ $\left(\mathrm{m}, \quad 1 \mathrm{H}, ~ \mathrm{H}-1, J_{1,2}=10.4 \mathrm{~Hz}\right), \quad 7.02-7.44(\mathrm{~m}, 35 \mathrm{H}$, Ar) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=20.89(1 \mathrm{C}$, C-8), 26.48 ($1 \mathrm{C}, \mathrm{C}-7$), 69.45 ($1 \mathrm{C}, \mathrm{C}-6$), 71.24 (1 C , $\left.\mathrm{C}-5^{\prime}\right), 71.69,71.86,72.96,73.14\left(4 \mathrm{C}, \mathrm{OCH}_{2}\right), 73.26$ $(1 \mathrm{C}, \mathrm{C}-6), 74.66,74.71,75.21\left(3 \mathrm{C}, \mathrm{OCH}_{2}\right), 78.59(1 \mathrm{C}$, C-4'), 78.87 ($1 \mathrm{C}, \mathrm{C}-3$), $80.86,80.94$ (2C, C-5, C-2'), 82.00 ($1 \mathrm{C}, \mathrm{C}-3^{\prime}$), 85.31 ($1 \mathrm{C}, \mathrm{C}-4$), 93.78 ($1 \mathrm{C}, \mathrm{C}-1^{\prime}$), 126.87-128.75 (42C, Ar), 130.60 (1C, C-2), 131.80 (1C, C-1) ppm.

4.10. 4,5,6,8-Tetra- O-acetyl-3,7-anhydro-1,2-dideoxy-d-glycero-d-galacto-oct-1-enitol [β-anomer] and 4,5,6,8-tetra-O-acetyl-3,7-anhydro-1,2-dideoxy-D-glycero-D-talo-oct-1-enitol [α-anomer] 14

Under an argon atmosphere, a solution of $\mathbf{1 3}^{16}(8.19 \mathrm{~g}$, 19.92 mmol) in dry THF (70 mL) was added dropwise to a solution of vinyl magnesium bromide in THF ($200 \mathrm{~mL}, 1 \mathrm{M}, 200 \mathrm{mmol}$). After the end of the exothermic reaction heating under reflux was continued for 5 h . The reaction mixture was poured into iced water and neutralized with acetic acid. The aqueous phase was evaporated and the residue dried for several hours in vacuo. After suspension of the residue in pyridine $(150 \mathrm{~mL})$ and addition of acetic anhydride $(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the reaction mixture was stirred for 2 days. The mixture was then poured into ice water and extracted with dichloromethane. After evaporation of the solvent the residue was purified by column chromatography (petroleum ether/ethyl acetate $3: 1$) to give 3.177 g of $\mathbf{1 4}$ ($8.86 \mathrm{mmol}, 45 \%$, white solid) as an inseparable anomeric mixture ($\alpha: \beta \approx 0.4: 1.0$). $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9}, 358.4$; MAL-DI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 381,[\mathrm{M}+\mathrm{K}]^{+}: 397 ; \beta$-anomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.98,2.04,2.09,2.13$ $(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}, \mathrm{Ac}), 3.68$ (ddd, $1 \mathrm{H}, \mathrm{H}-7, J_{6,7}=9.9$, $\left.J_{7,8 \mathrm{a}}=5.6, \quad J_{7,8 \mathrm{~b}}=2.5 \mathrm{~Hz}\right), \quad 4.08-4.18 \quad(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{H}-3$, $\mathrm{H}-8 \mathrm{~b}, J_{2,3}=5.3, J_{3,4}=1.3, J_{7,8 \mathrm{~b}}=2.5, J_{8 \mathrm{a}, 8 \mathrm{~b}}=12.2 \mathrm{~Hz}$), $4.27\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}, J_{7,8 \mathrm{a}}=5.6, J_{8 \mathrm{a}, 8 \mathrm{~b}}=12.2 \mathrm{~Hz}\right), 5.08$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5, J_{4,5}=3.4, J_{5,6}=9.9 \mathrm{~Hz}\right), 5.24(\mathrm{ddd} \sim \mathrm{dt}$, $\left.1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.3, J_{1 \mathrm{~b}, 2}=10.8\right), 5.25(\mathrm{dd} \sim \mathrm{t}, 1 \mathrm{H}$, H-6, $J_{5,6}=J_{6,7}=9.9 \mathrm{~Hz}$), $5.85(\mathrm{ddd} \sim \mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$, $\left.J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.3, \quad J_{1 \mathrm{a}, 2}=17.5 \mathrm{~Hz}\right), \quad 5.40 \quad(\mathrm{dd}, \quad 1 \mathrm{H}, \quad \mathrm{H}-4$, $\left.J_{3,4}=1.3, \quad J_{4,5}=3.4 \mathrm{~Hz}\right), \quad 5.72 \quad($ ddd, $\quad 1 \mathrm{H}, \quad \mathrm{H}-2$, $\left.J_{1 \mathrm{a}, 2}=17.5, J_{1 \mathrm{~b}, 2}=10.8, J_{2,3}=5.3 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.77,20.83,20.86,20.95$ (4C, Ac), $63.04(1 \mathrm{C}, \mathrm{C}-8), 66.23(1 \mathrm{C}, \mathrm{C}-6), 70.05(1 \mathrm{C}, \mathrm{C}-4)$, 72.41 (1C, C-5), 76.28 (1C, C-7), 77.57 (1C, C-3), 118.59 ($1 \mathrm{C}, \mathrm{C}-1$), 132.43 ($1 \mathrm{C}, \mathrm{C}-2$), 169.84, 170.35, 170.57, 170.91 (4C, acetyl $-\mathrm{CO}_{2}$) ppm; Anal. Calcd for
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9}, 358.4$: C, 53.62; H, 6.20. Found: C, 52.95; H, 6.20 .

4.11. 3,7-Anhydro-1,2-dideoxy-D-glycero-D-galacto-oct-1-enitol [β-anomer] and 3,7-anhydro-1,2-dideoxy-d-glycero-D-talo-oct-1-enitol [α-anomer] 15

To a solution of $14(3.102 \mathrm{~g}, 8.660 \mathrm{mmol})$ in dry methanol $(50 \mathrm{~mL})$ was added sodium methoxide (NaOMe) until pH 9 was reached. The reaction mixture was stirred for several hours until TLC control (dichloromethane/ methanol 10:1) confirmed complete reaction. After neutralization with Amberlite IR $120 \mathrm{H}^{+}$, the solution was filtered and the solvent evaporated to give 1.645 g of 15 ($8.649 \mathrm{mmol}, 100 \%$, colourless syrup) as an inseparable anomeric mixture ($\alpha: \beta \approx 0.4: 1.0$). $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}, 190.2$; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 213,[\mathrm{M}+\mathrm{K}]^{+}: 229 ; \beta$-anomer: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=3.03-3.06(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-7), 3.28-3.47,3.57-3.69(2 \times \mathrm{m}, 10 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5$, H-6, H-8a/b), 3.82 (dd, 1H, H-3), 4.29-4.75 (br m, 8H, $\mathrm{OH}), 5.09(\mathrm{ddd} \sim \mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 5.20-5.29(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-1 \mathrm{a}, \mathrm{H}-1 \mathrm{~b}), 5.84-5.95$ (m, 2H, H-2) ppm. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \quad\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=61.68(1 \mathrm{C}, \mathrm{C}-8), 67.20$, $71.79,74.75,78.92,81.06$ (5C, C-3, C-4, C-5, C-6, $\mathrm{C}-7), 115.73$ ($1 \mathrm{C}, \mathrm{C}-1$), 137.07 ($1 \mathrm{C}, \mathrm{C}-2$) ppm.

4.12. 3,7-Anhydro-8-O-tert-butyldiphenylsilyl-1,2-dide-oxy-d-glycero-d-galacto-oct-1-enitol [β-anomer] and 3,7-anhydro-8-O-tert-butyldiphenylsilyl-1,2-dideoxy-D-glycero-d-talo-oct-1-enitol [α-anomer] 16

To a solution of $\mathbf{1 5}(1.662 \mathrm{~g}, 8.738 \mathrm{mmol})$ in DMF $(50 \mathrm{~mL})$ was added imidazole $(0.654 \mathrm{~g}, 9.606 \mathrm{mmol})$ and tert-butyldiphenylsilyl chloride $(2.46 \mathrm{~mL}$, 9.612 mmol). The reaction mixture was stirred for 3 days with two further additions of tert-butyldiphenylsilyl chloride ($0.80 \mathrm{~mL}, 0.60 \mathrm{~mL}$, respectively). After TLC control confirmed the disappearance of the starting material, the reaction was quenched with water. Acetone was then added in order to precipitate the imidazolium salts. After filtration and evaporation, the residue was purified by column chromatography (petroleum ether/ethyl acetate $1: 2$) to give 2.996 g of 16 ($6.989 \mathrm{mmol}, 80 \%$, colourless syrup) as an inseparable anomeric mixture $(\alpha: \beta \approx 0.4: 1.0) . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}$, 428.7; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 452,[\mathrm{M}+\mathrm{K}]^{+}: 467$; β-anomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.06$ (s, 9 H , tert-butyl), 2.87-3.05 (br s, $3 \mathrm{H}, 3 \times \mathrm{OH}$), 3.37$3.41 \quad\left(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{H}-7, \quad J_{6,7}=9.5, \quad J_{7,8 \mathrm{a}}=4.7, \quad J_{7,8 \mathrm{~b}}=\right.$ $5.7 \mathrm{~Hz}), 3.63\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5, J_{4,5}=3.2, J_{5,6}=9.1 \mathrm{~Hz}\right)$, 3.87-3.90, $4.01-4.02(2 \times \mathrm{m}, ~ 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-6$, $\left.J_{2,3}=4.7, \quad J_{4,5}=3.2, \quad J_{5,6}=9.1, \quad J_{6,7}=9.5 \mathrm{~Hz}\right), \quad 3.93$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}, J_{7,8 \mathrm{a}}=4.7, J_{8 \mathrm{a}, 8 \mathrm{~b}}=10.7 \mathrm{~Hz}\right), 3.98(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}, J_{7,8 \mathrm{~b}}=5.7, J_{8 \mathrm{a}, 8 \mathrm{~b}}=10.7 \mathrm{~Hz}\right), 5.29(\mathrm{ddd} \sim \mathrm{dt}$, $\left.1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.5, J_{1 \mathrm{a}, 2}=17.3 \mathrm{~Hz}\right), 5.39(\mathrm{ddd} \sim$ $\left.\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.5, J_{1 \mathrm{~b}, 2}=10.7 \mathrm{~Hz}\right), 5.87(\mathrm{ddd}$, $1 \mathrm{H}, \mathrm{H}-2, J_{1 \mathrm{a}, 2}=17.3, J_{1 \mathrm{~b}, 2}=10.7, J_{2,3}=4.7 \mathrm{~Hz}$), $7.38-$ $7.45, \quad 7.66-7.70(2 \times \mathrm{m}, ~ 10 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.79$ (4C, tert-butyl), 65.28 (1C, C-8), 70.54, 71.00, 75.31, 77.92, 78.23 (5C, C-3, C-4, C-5, C-6, C-7), 117.47 (1C, C-1), 127.80, 129.89, $132.75,132.78,134.06,135.55$ (12C, Ar), 134.06 (1C, C-2) ppm.
4.13. 3,7-Anhydro-8-O-tert-butyldiphenylsilyl-1,2-dide-oxy-4,5-di-O-isopropylidene-d-glycero-d-galacto-oct-1enitol 17

To a stirred solution of $16(0.259 \mathrm{~g}, 0.604 \mathrm{mmol})$ in acetone (6 mL) was added 2,2-dimethoxypropane $(1.5 \mathrm{~mL})$ and p-toluenesulfonic acid $(0.003 \mathrm{~g})$. After stirring overnight, two drops of triethylamine were added and the solvents evaporated. Chromatography of the residue (petroleum ether/ethyl acetate 4:1) gave 0.176 g of $17(0.375 \mathrm{mmol}, 62 \%$, white solid) as pure β-anomer. Mp (solid after chromatography): 87$90^{\circ} \mathrm{C} ; \quad[\alpha]_{546}^{20}=-8.0 \quad(c \quad 0.5, \quad \mathrm{EtOAc}) ; \quad \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}$, 468.7; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 492,[\mathrm{M}+\mathrm{K}]^{+}: 508 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=1.18$ (s, 9 H , tert-butyl), $1.26, \quad 1.50(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{Me}), 2.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $6-\mathrm{OH}), 3.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7, J_{6,7}=9.2, J_{7,8 \mathrm{a}}=3.8, J_{7,8 \mathrm{~b}}=\right.$ $4.6 \mathrm{~Hz}), \quad 3.72\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad \mathrm{H}-4, \quad J_{4,5}=2.3 \mathrm{~Hz}\right), \quad 3.75$ $\left(\mathrm{ddd} \sim \mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-3, J_{2,3}=5.9 \mathrm{~Hz}\right), 3.86-3.93(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-5, \mathrm{H}-6, J_{4,5}=2.3, J_{6,7}=9.2 \mathrm{~Hz}\right), 4.02-4.09(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-8 \mathrm{a} / \mathrm{b}, J_{7,8 \mathrm{a}}=3.8, J_{7,8 \mathrm{~b}}=4.6, J_{8 \mathrm{a}, 8 \mathrm{~b}}=10.8 \mathrm{~Hz}\right), 5.12$ $\left(\mathrm{ddd} \sim \mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, \grave{J}_{1 \mathrm{a}, 1 \mathrm{~b}}=1.5, J_{1 \mathrm{~b}, 2}=10.7 \mathrm{~Hz}\right), 5.33$ $\left(\mathrm{ddd} \sim \mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.5, J_{1 \mathrm{a}, 2}=17.3 \mathrm{~Hz}\right), 6.09$ (ddd, $1 \mathrm{H}, \mathrm{H}-2, J_{1 \mathrm{a}, 2}=17.3, J_{1 \mathrm{~b}, 2}=10.7, J_{2,3}=5.9 \mathrm{~Hz}$), 7.19-7.26, 7.83-7.88 ($2 \times \mathrm{m}, 10 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=26.64$ (1C, Me), 27.08 (3C, tertbutyl), $28.53(1 \mathrm{C}, \mathrm{Me}), 64.95$ ($1 \mathrm{C}, \mathrm{C}-8$), 70.97 (1 C , C-6), 76.55 ($1 \mathrm{C}, \mathrm{C}-4$), 77.38 ($1 \mathrm{C}, \mathrm{C}-3$), 78.64 ($1 \mathrm{C}, \mathrm{C}-7$), 80.63 ($1 \mathrm{C}, \mathrm{C}-5$), $109.56\left(1 \mathrm{C}, \mathrm{CMe}_{2}\right), 116.54(1 \mathrm{C}, \mathrm{C}-1)$, 128.16-136.22 (13C, C-2, Ar) ppm; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}, 468.7$: C, 69.18; H, 7.76. Found: C, 68.75; H, 7.75.

4.14. (3,7-Anhydro-8-O-tert-butyldiphenylsilyl-1,2,6-tri-deoxy-4,5-di- O-isopropylidene-D-glycero-D-galacto-oct-1-enitol-6-yl)-2 ${ }^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-benzyl- α-d-glucopyranoside 18

To a solution of $\mathbf{1 7}(96 \mathrm{mg}, 205 \mu \mathrm{~mol})$ in dry dichloromethane (5 mL) with molecular sieves was added a solution of TMSOTf in dichloromethane $(170 \mu \mathrm{~L}$, concentration approx. $0.223 \mathrm{M}, 38 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$ under an argon atmosphere. Afterwards, a solution of $\mathbf{1 0}$ $(168 \mathrm{mg}, 248 \mu \mathrm{~mol})$ in dichloromethane $(4 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight and terminated by the addition of three drops of triethylamine. Evaporation of the solvent and chromatography of the residue (petroleum ether/ethyl acetate 12:1) gave $108 \mathrm{mg} 18(109 \mu \mathrm{~mol}, 53 \%)$ as a yellow syrup. $[\alpha]_{546}^{20}=+36.5 \quad(c \quad 0.5, \mathrm{EtOAc}) ; \quad \mathrm{C}_{61} \mathrm{H}_{70} \mathrm{O}_{10} \mathrm{Si}, \quad 991.4$; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 1014,[\mathrm{M}+\mathrm{K}]^{+}: 1030$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=1.24(\mathrm{~s}, 9 \mathrm{H}$, tert-butyl), $1.40,1.53(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \mathrm{Me}), 3.32$ (ddd, $1 \mathrm{H}, \mathrm{H}-7$, $\left.J_{6,7}=9.1, J_{7,8 \mathrm{a}}=2.2, J_{7,8 \mathrm{~b}}=4.4 \mathrm{~Hz}\right), 3.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-$ $\left.6^{\prime} \mathrm{b}, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=10.4 \mathrm{~Hz}\right), 3.61\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{1^{\prime}, 2^{\prime}}=3.5\right.$, $\left.J_{2^{\prime}, 3^{\prime}}=9.8 \mathrm{~Hz}\right), 3.69-3.74\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}^{\prime} \mathrm{G}\right.$, $\left.J_{2,3}=5.9, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=10.4 \mathrm{~Hz}\right), 3.98-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$, H-5'), $4.144 .30\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{\prime}{ }^{\prime}, \mathrm{H}-8 \mathrm{a} / \mathrm{b}, \mathrm{H}-6, \mathrm{H}-4\right.$, $\left.\mathrm{OCH}_{2}, J_{6,7}=9.1, J_{7,8 \mathrm{a}}=2.2, J_{7,8 \mathrm{~b}}=4.4, J_{2^{\prime}, 3^{\prime}}=9.8 \mathrm{~Hz}\right)$, $4.43,4.58,4.70,4.71,4.91,5.00,5.09\left(7 \times \mathrm{d}, 7 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $5.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, J_{1 \mathrm{~b}, 2}=10.4 \mathrm{~Hz}\right), 5.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$, $\left.J_{1 \mathrm{a}, 2}=17.0 \mathrm{~Hz}\right), \quad 5.90\left(\mathrm{~d}, 1 \mathrm{H}, \quad \mathrm{H}-1^{\prime}, \quad J_{1^{\prime}, 2^{\prime}}=3.5 \mathrm{~Hz}\right)$, $6.07-6.13 \quad\left(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{H}-2, \quad J_{1 \mathrm{a}, 2}=17.0, \quad J_{1 \mathrm{~b}, 2}=10.4\right.$,
$\left.J_{2,3}=5.9 \mathrm{~Hz}\right), 7.08-7.42,7.87-7.95(2 \times \mathrm{m}, 30 \mathrm{H}, \mathrm{Ar})$ $\mathrm{ppm}{ }^{13}{ }^{13} \mathrm{CMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=26.62$ (1C, Me), 27.29 (3C, tert-butyl), 28.26 ($1 \mathrm{C}, \mathrm{Me}$), 64.48 (1C, C-8), 69.21 ($1 \mathrm{C}, \mathrm{C}-6^{\prime}$), 72.03 ($1 \mathrm{C}, \mathrm{C}-5^{\prime}$), 73.13 ($1 \mathrm{C}, \mathrm{C}-4$), $73.27,73.61,75.40,75.57\left(4 \mathrm{C}, \mathrm{OCH}_{2}\right), 76.71,77.30$ (2C, C-3, C-5), 78.34, 78.47 (2C, C-7, C-4'), 80.32 (1C, C-6), 81.07 ($1 \mathrm{C}, \mathrm{C}-2^{\prime}$), 82.24 ($1 \mathrm{C}, \mathrm{C}-3^{\prime}$), 95.84 (1 C , C-1'), $109.72\left(1 \mathrm{C}, C \mathrm{Me}_{2}\right), 116.67(1 \mathrm{C}, \mathrm{C}-1), 127.52-$ 128.57, 129.90, 129.99, 135.31, 136.08, 136.47 (37C, $\mathrm{C}-2, \mathrm{Ar}) \mathrm{ppm}$.
4.15. (3,7-Anhydro-1,2,6-trideoxy-4,5-di- O-isopropylid-ene-d-glycero-d-galacto-oct-1-enitol-6-yl)-2', $3^{\prime}, 4^{\prime}, 6^{\prime}$ -tetra- O-benzyl- α-d-glucopyranoside 19

To a solution of $\mathbf{1 8}(157 \mathrm{mg}, 158 \mu \mathrm{~mol})$ in THF (7 mL) was added a solution of tetrabutylammonium fluoride in THF ($0.19 \mathrm{~mL}, 1 \mathrm{M}, 190 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 4 days. Evaporation of the solvent and chromatography of the residue (petroleum ether/ethyl acetate $4: 1$) gave 73 mg of $\mathbf{1 9}$ $(97 \mu \mathrm{~mol}, 61 \%)$ as a yellowish syrup. $[\alpha]_{546}^{20}=+66.0(c$ 0.5 , EtOAc); $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{10}, \quad 753.0$; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 776,[\mathrm{M}+\mathrm{K}]^{+}: 792 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=1.22,1.50(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{Me}), 2.20(\mathrm{br}$ s, $1 \mathrm{H}, 8-\mathrm{OH}), 3.12\left(\mathrm{ddd}, 1 \mathrm{H}, \quad \mathrm{H}-7, \quad J_{6,7}=9.5\right.$, $\left.J_{7,8 a}=2.5, \quad J_{7,8 b}=3.8 \mathrm{~Hz}\right), \quad 3.62\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad \mathrm{H}-2^{\prime}\right.$, $\left.J_{1^{\prime}, 2^{\prime}}=3.8, \quad J_{2^{\prime}, 3^{\prime}}=9.8 \mathrm{~Hz}\right), \quad 3.68-3.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$, $\mathrm{H}-4, J_{2,3}=6.1 \mathrm{~Hz}$), $3.75-3.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}^{\prime} 6^{\prime} \mathrm{a} / \mathrm{b}\right.$, $J_{3^{\prime}, 4^{\prime}}=J_{4^{\prime}, 5^{\prime}}=9.8, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=J_{5^{\prime}, 6^{\mathrm{b}} \mathrm{b}}=3.2 \mathrm{~Hz}$), 3.89 (br d, $1 \mathrm{H}, \quad \mathrm{H}-8 \mathrm{~b}, \quad J_{7,8 \mathrm{~b}}=3.8 \mathrm{~Hz}$), 3.95 (br d, $1 \mathrm{H}, \quad \mathrm{H}-8 \mathrm{a}$, $\left.J_{7,8 \mathrm{a}}=2.5 \mathrm{~Hz}\right), 4.14\left(\mathrm{ddd} \sim \mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}, J_{4^{\prime}, 5^{\prime}}=9.8\right.$, $\left.J_{5^{\prime}, 6^{\prime} \mathrm{a}}=J_{5^{\prime}, 6^{\prime} \mathrm{b}}=3.2 \mathrm{~Hz}\right), 4.18-4.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-3^{\prime}\right.$, $\left.J_{5,6}=6.9, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=9.8 \mathrm{~Hz}\right), 4.26(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6$, $J_{5,6}=6.9, J_{6,7}=9.5 \mathrm{~Hz}$), 4.35, 4.43, 4.59, 4.63, 4.77, 4.87, $4.95\left(7 \times \mathrm{d}, 7 \mathrm{H}, \quad \mathrm{OCH}_{2}\right), \quad 5.07-5.10(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}, \mathrm{H}-1 \mathrm{~b}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.3, J_{1 \mathrm{~b}, 2}=10.4 \mathrm{~Hz}\right), 5.23(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-1 \mathrm{a}, J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.3, J_{1 \mathrm{a}, 2}=17.3 \mathrm{~Hz}\right), 5.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}\right.$, $\left.J_{1^{\prime}, 2^{\prime}}=3.8 \mathrm{~Hz}\right), \quad 6.04-6.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2, J_{1 \mathrm{a}, 2}=17.3\right.$, $\left.J_{1 \mathrm{~b}, 2}=10.4, \quad J_{2,3}=6.1 \mathrm{~Hz}\right), 7.06-7.45(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar})$ $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=26.58,28.30$ $(2 \mathrm{C}, 2 \times \mathrm{Me}), 62.51(1 \mathrm{C}, \mathrm{C}-8), 69.52\left(1 \mathrm{C}, \mathrm{C}-6^{\prime}\right), 71.98$ $\left(1 \mathrm{C}, \mathrm{C}-5^{\prime}\right), 73.08\left(1 \mathrm{C}, \mathrm{OCH}_{2}\right), 73.32(1 \mathrm{C}, \mathrm{C}-6), 73.55$ $\left(1 \mathrm{C}, \mathrm{OCH}_{2}\right), 75.31,75.63\left(2 \mathrm{C}, \mathrm{OCH}_{2}\right), 76.82,77.70$, $77.95,78.53$ (4C, C-3, C-4, C-7, C-4'), 80.42, 80.90, 82.38 (3C, C-5, C-2', C-3'), 96.14 (1C, C-1'), 109.70 ($1 \mathrm{C}, \mathrm{CMe}_{2}$), 117.00 ($1 \mathrm{C}, \mathrm{C}-1$), 127.55-128.60, 139.27, 139.86 (24C, Ar), 135.05 (1C, C-2) ppm.
4.16. [3,7-Anhydro-8-O-(4-toluenesulfonyl)-1,2,6-tride-oxy-4,5-di- O-isopropylidene-d-glycero-D-galacto-oct-1-enitol-6-yll-2 ${ }^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-benzyl- α-d-glucopyranoside 20

To a solution of $\mathbf{1 9}(63 \mathrm{mg}, 84 \mu \mathrm{~mol})$ in dry pyridine $(4 \mathrm{~mL})$ was added a catalytic amount of 4-dimethylaminopyridine (DMAP) and tosyl chloride (19 mg , $100 \mu \mathrm{~mol})$. The solution was stirred at room temperature for 5 days with several extra additions of tosyl chloride until the largest part of starting material had reacted. Evaporation of the solvent and chromatography of the residue (petroleum ether/ethyl acetate 6:1) gave 63 mg of $\mathbf{2 0}(69 \mu \mathrm{~mol}, 83 \%)$ as a colourless syrup.
$[\alpha]_{546}^{20}=+56.0(c \quad 0.25, \mathrm{EtOAc}) ; \mathrm{C}_{52} \mathrm{H}_{58} \mathrm{O}_{12} \mathrm{~S}, 907.2$; MALDI-TOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 930,[\mathrm{M}+\mathrm{K}]^{+}: 946 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=1.17, \quad 1.39 \quad(2 \times \mathrm{s}, \quad 2 \times 3 \mathrm{H}$, $2 \times \mathrm{Me}$), 1.78 (s, $3 \mathrm{H}, \mathrm{Ts}-\mathrm{Me}$), 3.26 (ddd, $1 \mathrm{H}, \mathrm{H}-7$, $\left.J_{6,7}=9.4, J_{7,8 \mathrm{a}}=2.3, J_{7,8 \mathrm{~b}}=5.4 \mathrm{~Hz}\right), 3.54-3.58(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-3, J_{2,3}=5.9, J_{3,4}=2.4 \mathrm{~Hz}$), $3.59-3.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$, $\left.\mathrm{H}-2^{\prime}, J_{3,4}=2.4, \quad J_{1^{\prime}, 2^{\prime}}=3.8, J_{2^{\prime}, 3^{\prime}}=9.4 \mathrm{~Hz}\right), 3.94-4.04$ (m, 4H, H-6, H-4', H-6'a/b, $J_{5,6}=6.4, \quad J_{6,7}=9.4$, $\left.J_{3^{\prime}, 4^{\prime}}=J_{4^{\prime}, 5^{\prime}}=9.4 \mathrm{~Hz}\right), 4.11-4.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-5^{\prime}\right.$, $\left.J_{5,6}=6.4, \quad J_{4^{\prime}, 5^{\prime}}=9.4 \mathrm{~Hz}\right), \quad 4.22\left(\mathrm{dd} \sim \mathrm{t}, \quad 1 \mathrm{H}, \quad \mathrm{H}-3^{\prime}\right.$, $\left.J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=9.4 \mathrm{~Hz}\right), 4.34\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}, J_{7,8 \mathrm{~b}}=5.4\right.$, $\left.J_{8 \mathrm{a}, 8 \mathrm{~b}}=10.5 \mathrm{~Hz}\right), 4.38\left(1, \mathrm{H}, \mathrm{OCH}_{2}\right), 4.47-4.52(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-8 \mathrm{a}, \mathrm{OCH}_{2}, J_{7,8 \mathrm{a}}=2.3, J_{8 \mathrm{a}, 8 \mathrm{~b}}=10.5 \mathrm{~Hz}\right), 4.58,4.67$, $4.75,4.95\left(4 \times \mathrm{d}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.99-5.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$, $\left.\mathrm{OCH}_{2}, \quad J_{\mathrm{a}, 1 \mathrm{~b}}=1.5, \quad J_{1 \mathrm{~b}, 2}=10.5 \mathrm{~Hz}\right), \quad 5.10(\mathrm{~d}, \quad 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), \quad 5.18 \quad\left(\mathrm{ddd} \sim \mathrm{dt}, \quad 1 \mathrm{H}, \quad \mathrm{H}-1 \mathrm{a}, \quad J_{\mathrm{la}, 1 \mathrm{~b}}=1.5\right.$, $\left.J_{1 \mathrm{la}, 2}=17.0 \mathrm{~Hz}\right), \quad 5.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}=3.8 \mathrm{~Hz}\right)$, $5.87-5.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2, J_{2,3}=5.9 \mathrm{~Hz}\right), 6.63(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar})$, 7.06-7.21 (m, $12 \mathrm{H}, \mathrm{Ar}), 7.33,7.41(2 \times \mathrm{d}, 8 \mathrm{H}, \mathrm{Ar})$, 7.82 (d, $2 \mathrm{H}, \mathrm{Ar}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=21.14$ ($1 \mathrm{C}, \mathrm{Ts}-\mathrm{Me}$), 26.39, 28.10 ($2 \mathrm{C}, 2 \times \mathrm{Me}$), 69.45 ($1 \mathrm{C}, \mathrm{C}-6^{\prime}$), 69.82 ($1 \mathrm{C}, \mathrm{C}-8$), 72.33 ($1 \mathrm{C}, \mathrm{C}-5^{\prime}$), $73.26(1 \mathrm{C}, \mathrm{C}-6), 73.41,73.62\left(2 \mathrm{C}, \mathrm{OCH}_{2}\right), 75.37(1 \mathrm{C}$, $\left.\mathrm{OCH}_{2}\right), 75.55(1 \mathrm{C}, \mathrm{C}-7), 75.66\left(1 \mathrm{C}, \mathrm{OCH}_{2}\right), 76.41$, 80.85 (2C, C-4, C-2'), 77.25 ($1 \mathrm{C}, \mathrm{C}-3$), 78.43 ($1 \mathrm{C}, \mathrm{C}-$ 4^{\prime}), $79.62(1 \mathrm{C}, \mathrm{C}-5), 82.20\left(1 \mathrm{C}, \mathrm{C}-3^{\prime}\right)$, $96.22\left(1 \mathrm{C}, \mathrm{C}-1^{\prime}\right)$, 116.94 (1C, C-1), $127.64-128.73,129.88$ (30C, Ar), 134.40 (1C, C-2) ppm.

4.17. (3,7-Anhydro-8-bromo-1,2,6,8-tetradeoxy-4,5-di-O-isopropylidene-d-glycero-d-galacto-oct-1-enitol-6-yl)$2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-benzyl- α-d-glucopyranoside 21

A solution of $20(52 \mathrm{mg}, 57 \mu \mathrm{~mol})$ and $\mathrm{NaBr}(59 \mathrm{mg}$, $573 \mu \mathrm{~mol})$ in DMF (4 mL) was heated to $70^{\circ} \mathrm{C}$ and stirred overnight. After evaporation of the solvent, the residue was dissolved in dichloromethane and the solution filtrated. Evaporation of the solvent yielded 59 mg of the raw product 21 accompanied by sodium tosylate. The residue was directly used without further purification for the subsequent elimination.

4.18. (3,7-Anhydro-1,2,6,8-tetradeoxy-4,5-di- O-isoprop-ylidene-d-galacto-octo-1,7-dienitol-6-yl)-2', $\mathbf{3}^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-$O$-benzyl- α-D-glucopyranoside 22

To a solution of raw product 21 dissolved in pyridine (3 mL), was added silver fluoride ($47 \mathrm{mg}, 370 \mu \mathrm{~mol}$). The solution was stirred under light exclusion at room temperature. On the next day, a second portion of silver fluoride was added and stirring continued for 1 day until TLC showed complete conversion of bromide 21. After filtration, co-distillation with toluene and evaporation of the solvents chromatography of the residue (petroleum ether/ethyl acetate $10: 1$) gave 9 mg of 22 (12.2 $\mu \mathrm{mol}, 21 \%$ via two steps) as a colourless syrup. $[\alpha]_{\mathrm{D}}^{20}=+14.9\left(c 0.5, \mathrm{CHCl}_{3}\right) ; \mathrm{C}_{45} \mathrm{H}_{50} \mathrm{O}_{9}, 735.0 ;$ MALDITOF: $[\mathrm{M}+\mathrm{Na}]^{+}: \quad 758, \quad[\mathrm{M}+\mathrm{K}]^{+}: \quad 774 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \quad \mathrm{C}_{6} \mathrm{D}_{6}\right): \quad \delta=1.17, \quad 1.50 \quad(2 \times \mathrm{s}, \quad 2 \times 3 \mathrm{H}$, $2 \times \mathrm{Me}), 3.51\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{1^{\prime}, 2^{\prime}}=3.7, J_{2^{\prime}, 3^{\prime}}=9.4 \mathrm{~Hz}\right.$), 3.67 (dd, 1H, H-6'b, $J_{5^{\prime}, 6^{\prime} \mathrm{b}}=1.8, J_{6^{\prime}, 6^{\prime} \mathrm{b}}=10.7 \mathrm{~Hz}$), 3.78 (dd, $1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{a}, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=3.6, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=10.7 \mathrm{~Hz}$), $3.90\left(\mathrm{dd} \sim \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}, J_{3^{\prime}, 4^{\prime}}=J_{4^{\prime}, 5^{\prime}}=9.4 \mathrm{~Hz}\right), 4.09(\mathrm{dd}$,
$\left.1 \mathrm{H}, \mathrm{H}-4, J_{3,4}=1.5, J_{4,5}=7.4 \mathrm{~Hz}\right), 4.14-4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$, H-5 $, \quad J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=J_{4^{\prime}, 5^{\prime}}=9.4, \quad J_{5^{\prime}, 6^{\prime} \mathrm{a}}=3.6, \quad J_{5^{\prime}, 6^{\prime} \mathrm{b}}=$ $1.8 \mathrm{~Hz}), 4.27-4.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-8 \mathrm{~b}, \mathrm{OCH}_{2}\right.$, $\left.J_{4,5}=7.4 \mathrm{~Hz}\right), 4.45,4.53,4.67\left(3 \times \mathrm{d}, 3 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.76$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 4.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.94-4.98(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-1^{\prime}, \quad \mathrm{OCH}_{2}, \quad J_{1^{\prime}, 2^{\prime}}=3.7 \mathrm{~Hz}\right), \quad 5.00(\mathrm{dd}, \quad 1 \mathrm{H}, \mathrm{H}-3$, $\left.J_{2,3}=6.6, J_{3,4}=1.5 \mathrm{~Hz}\right), 5.10(\mathrm{ddd} \sim \mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$, $\left.J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.5, J_{1 \mathrm{~b}, 2}=10.4 \mathrm{~Hz}\right), 5.37(\mathrm{ddd} \sim \mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$, $\left.J_{1 \mathrm{a}, 1 \mathrm{~b}}=1.5, J_{1 \mathrm{a}, 2}=17.3 \mathrm{~Hz}\right), 6.10-6.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2$, $\left.J_{1 \mathrm{a}, 2}=17.3, J_{1 \mathrm{~b}, 2}=10.4, J_{2,3}=6.6 \mathrm{~Hz}\right), 7.03-7.35(\mathrm{~m}$, $20 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=24.72$, $26.76(2 \mathrm{C}, 2 \times \mathrm{Me}), 69.12\left(1 \mathrm{C}, \mathrm{C}-6^{\prime}\right), 72.16\left(1 \mathrm{C}, \mathrm{C}-5^{\prime}\right)$, 73.40, 74.43, 74.90 (3C, C-3, C-5, C-6), 73.46, 73.59 $\left(2 \mathrm{C}, \mathrm{OCH}_{2}\right), 75.24,75.56\left(2 \mathrm{C}, \mathrm{OCH}_{2}\right), 75.72(1 \mathrm{C}, \mathrm{C}-4)$, 78.42 ($1 \mathrm{C}, \mathrm{C}-4^{\prime}$), 81.07 ($1 \mathrm{C}, \mathrm{C}-2^{\prime}$), 82.42 ($1 \mathrm{C}, \mathrm{C}-3^{\prime}$), 92.62 ($1 \mathrm{C}, \mathrm{C}-8$), 96.78 ($1 \mathrm{C}, \mathrm{C}-1^{\prime}$), 117.58 ($1 \mathrm{C}, \mathrm{C}-1$), 127.58-128.70 (24C, Ar), 135.13 (1C, C-2) ppm.

4.19. cis-($2 S, 3 R, 4 R)-2-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-Tetra- O-benzyl- α-d-glucopyranosyloxy)-3,4-isopropylidenedioxy-cyclooct-5enone 23

A solution of $22(9 \mathrm{mg}, 12.2 \mu \mathrm{~mol})$ in n-decane $(5 \mathrm{~mL})$ and toluene (1 mL) was heated under microwave irradiation to $180^{\circ} \mathrm{C}$ for 15 min . Evaporation of the solvent and chromatography of the residue gave 1.0 mg of $\mathbf{2 3}$ $(1.4 \mu \mathrm{~mol}, 70 \%)$ as a colourless syrup besides 7 mg recovered 22 ($9.5 \mu \mathrm{~mol}) . \mathrm{C}_{45} \mathrm{H}_{50} \mathrm{O}_{9}, ~ 735.0$; MALDITOF: $[\mathrm{M}+\mathrm{Na}]^{+}: 757 ;[\alpha]_{546}^{20}=+53.0$ (c $0.1, \mathrm{CHCl}_{3}$); v (film $/ \mathrm{cm}^{-1}$): $1719(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=1.20,1.46(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{Me}), 1.56-1.70(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-7 \mathrm{a} / \mathrm{b}), 2.20\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}, J_{8 \mathrm{a}, 8 \mathrm{~b}}=13.6 \mathrm{~Hz}\right)$, 2.41 (ddd, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}, J_{8 \mathrm{a}, 8 \mathrm{~b}}=13.6 \mathrm{~Hz}$), $3.56-3.59(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime} \mathrm{b}, J_{1^{\prime}, 2^{\prime}}=3.8, J_{2^{\prime}, 3^{\prime}}=9.5, J_{5^{\prime}, 6^{\prime} \mathrm{b}}=1.5$, $\left.J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=10.8 \mathrm{~Hz}\right), 3.67-3.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime} \mathrm{a}\right.$, $J_{3^{\prime}, 4^{\prime}}=J_{4^{\prime}, 5^{\prime}}=9.5, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=4.7, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=10.8 \mathrm{~Hz}$), $4.09-$ 4.13 (ddd, $1 \mathrm{H}, \quad \mathrm{H}-5^{\prime}, \quad J_{4^{\prime}, 5^{\prime}}=9.5, \quad J_{5^{\prime}, 6^{\prime} \mathrm{a}}=4.7$, $\left.J_{5^{\prime}, 6^{\prime} \mathrm{b}}=1.5 \mathrm{~Hz}\right), 4.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2, J_{2,3}=8.9 \mathrm{~Hz}\right), 4.29$ $\left(\mathrm{dd} \sim \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=9.5 \mathrm{~Hz}\right), 4.33(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.35-4.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{OCH}_{2}, J_{2,3}=8.9\right.$, $\left.J_{3,4}=5.2 \mathrm{~Hz}\right), \quad 4.42-4.44 \quad\left(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{H}-4, \quad J_{3,4}=5.2\right.$, $J_{4,5}=6.3, J_{4,6}=1.8 \mathrm{~Hz}$, 4.49, 4.60, 4.62, 4.68, 4.89, $4.95\left(6 \times \mathrm{d}, \quad 6 \mathrm{H}, \quad \mathrm{OCH}_{2}\right), \quad 5.05\left(\mathrm{~d}, \quad 1 \mathrm{H}, \quad \mathrm{H}-1^{\prime}\right.$, $\left.J_{1^{\prime}, 2^{\prime}}=3.8 \mathrm{~Hz}\right), \quad 5.37-5.45\left(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{H}-6, \quad J_{4,6}=1.8\right.$, $\left.J_{5,6}=11.2 \mathrm{~Hz}\right), \quad 5.60 \quad\left(\mathrm{ddd}, \quad 1 \mathrm{H}, \quad \mathrm{H}-5, \quad J_{4,5}=6.3\right.$, $\left.J_{5,6}=11.2 \mathrm{~Hz}\right), 6.96-7.36,7.48-7.51(2 \times \mathrm{m}, 20 \mathrm{H}, \mathrm{Ar})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=24.77(1 \mathrm{C}, \mathrm{C}-7)$, $26.35,27.85(2 \mathrm{C}, 2 \times \mathrm{Me}), 44.20(1 \mathrm{C}, \mathrm{C}-8), 69.70(1 \mathrm{C}$, $\left.\mathrm{C}^{\prime} 6^{\prime}\right), 71.72\left(1 \mathrm{C}, \mathrm{C}-5^{\prime}\right), 71.96,73.52\left(2 \mathrm{C}, \mathrm{OCH}_{2}\right), 73.87$ $(1 \mathrm{C}, \mathrm{C}-4), 75.02,75.60\left(2 \mathrm{C}, \mathrm{OCH}_{2}\right), 78.16(2 \mathrm{C}, \mathrm{C}-3$, C-4'), 80.76 ($1 \mathrm{C}, \mathrm{C}-2^{\prime}$), 82.17 ($1 \mathrm{C}, \mathrm{C}-3^{\prime}$), 82.78 (1 C ,

C-2), 99.20 ($1 \mathrm{C}, \mathrm{C}^{\prime} 1^{\prime}$), 127.21-128.88 (25C, C-6, Ar), 134.10 (1C, C-5) ppm.

Acknowledgements

Support of this work by the Deutsche Forschungsgemeinschaft (GRK 464) and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

1. Shi, Q.-W.; Sauriol, F.; Mamer, O.; Zamir, L. O. J. Nat. Prod. 2003, 66, 1480-1485.
2. Sassa, T.; Tajima, N.; Sato, M.; Takahashi, A.; Kato, N. Biosci. Biotechnol. Biochem. 2002, 66, 2356-2361; Tajima, N.; Nukina, M.; Kato, N.; Sassa, T. Biosci. Biotechnol. Biochem. 2004, 68, 1125-1130.
3. Marre, E.; Colombo, R.; Lado, P.; Rasi-Caldogno, F. Plant Sci. Lett. 1974, 2, 139-150; Ballio, A.; De Michelis, M. I.; Lado, P.; Randazzo, G. Physiol. Plant. 1981, 52, 471-475.
4. Werschkun, B.; Thiem, J. Angew. Chem. 1997, 109, 29052906; Angew. Chem., Int. Ed. 1997, 36, 2793-2794.
5. Wang, W.; Zhang, Y.; Sollogoub, M.; Sinaÿ, P. Angew. Chem. 2000, 112, 2588-2590; Angew. Chem., Int. Ed. 2000, 39, 2466-2467.
6. In analogy to: Shulman, M. L.; Shiyan, S. D.; Khorlin, A. Y. Carbohydr. Res. 1974, 33, 229-235.
7. Horton, D.; Weckerle, W. Carbohydr. Res. 1975, 44, $227-$ 240.
8. Petasis, N. A.; Patane, M. A. Tetrahedron 1992, 48, 57575821.
9. The glycosylation step was performed employing the 'Inverse Procedure', viz adding the dissolved donor to the mixture of acceptor and promotor $(15 \mathrm{~mol} \%)$ at $0^{\circ} \mathrm{C}$ under argon: Schmidt, R. R.; Toepfer, A. Tetrahedron Lett. 1991, 32, 3353-3356.
10. Schmidt, R. R.; Michel, J.; Roos, M. Liebigs Ann. Chem. 1984, 22, 1343-1357.
11. Large amounts of AgF were required to effect complete elimination leading in turn to significant losses of product during workup due to adsorption on silver salts.
12. Paquette, L. A.; Friedrich, D.; Rogers, R. D. J. Org. Chem. 1991, 56, 3841-3849.
13. van Hooft, P. A. V.; van der Marel, G. A.; van Boeckel, C. A. A.; van Boom, J. H. Tetrahedron Lett. 2001, 42, 17691772.
14. Nomenclature of Carbohydrates (Recommendations 1996), Carbohydr. Res. 1997, 297, 1-92.
15. Lemieux, R. U. Methods Carbohydr. Chem. 1963, 32, 221222.
16. Levene, P. A.; Tipson, R. S. J. Biol. Chem. 1931, 90, 8998.

[^0]: * Corresponding author. Tel.: +49 4042838 4241; fax: +49 4042838

 4325; e-mail: joachim.thiem@chemie.uni-hamburg.de

